Math, asked by kuldeepsingh1521, 1 year ago

The length, breadth and height of a cuboidal water tank are 7m, 6m and 15m respectively. If 8400 liters of water is pumped out of the water tank, find the fall in the water level in the water tank.

Answers

Answered by KaranbirSandhu
0

0.2 m fall in height of water

Answered by nilesh102
3

\textbf{\huge\underline{\underline\red{solution} : -  }} \\  \\ \bold{\underline\purple{here \: we \: know}} \\  \\  \red{1.} \bold \blue{ \: length  \: (l)\: of \: cuboidal \:water \: tank \: is \: 7 \: m .} \\ \red{2.} \bold \blue{ \: breadth  \:( b)\: of \: cuboidal \:  water\: tank \: is \: 6 \: m.} \\ \red{3.} \bold \blue{ \: height  \: (h)\: of \: cuboidal \: water  \: tank \: is \: 15 \: m.} \\  \red{4.} \bold \blue{  \: 8400 \: litres \: of \: water \: pumped \: out \: from } \\ \:  \:  \:  \: \bold \blue{water \: tank.} \\  \\  \underline\bold\red{ \: To \: find \:  \: fall \: of \: water \: level \: in \: water \: tank.}  \\  \\ \underline\bold\red{  \: we \: use \: formula : -  } \\  \\  =  &gt; \underline\bold\purple{volume \: of \: cuboid } = \bold\red{l \times  b\times  h} \\  \\ =  &gt; \underline\bold\purple{volume \: of \: cuboid } = \bold\red{7 \times  6\times  15} \\  \\ =  &gt; \underline\bold\purple{volume \: of \: cuboid } = \bold\red{630 \:  {m}^{3} } \\  \\  \underline\bold\red{ \: we \: know \: }  \:  \:   \fbox\bold\pink{ \: 1 \:  {m}^{3}  =  \: 1000 \: litre \: } \\  \\  \underline\bold\blue{ \: hence} \\ \\  \bold\purple{\:630 \:  {m}^{3}   = 630 \times 1000 = 630000 \: litre} \\  \\ \underline \bold\blue{now} \\  \\  \underline\bold\purple{fall \: of \: water \: level \: in \: water \: tank}  \\ = \:  \:  \: \bold\blue{(water \: in \: water \: tank \:) } \\  \:  \:  \:   -  \bold\orange{ \: (\: 8400 \: litre water \: pumped \: out)} \\  \\ \bold\purple{fall \: of \: water \: level... =( 630000 \:  - 8400 \:) litre} \\  \\ \bold\purple{fall \: of \: water \: level...  = 621600 \: litre} \\  \\ </p><p> \underline \bold \red{Hence  \blue{\: 621600 \: litre \: }water \: remain \: in \:water  \:}  \\ \underline \bold \red{ tank \: after\blue { \: 8400 \: litre \: } \: of \: water  \: pumped \: out.}

Similar questions
Science, 6 months ago