The semivertical angle of cone of the rays incident on the objective of microscope is 20°. If the wavelength of incident light ray is 6600 , calculate the smallest distance between two points which can be just resolved.
(Ans : for luminous 10720 for nonluminous 8772 )
Answers
Answered by
8
heya....
Here is your answer...
Let rr be the radius ll be the slant height
and hh be the vertical height of a cone of semi-vertical angle αα
Surface area S=πrl+πr2S=πrl+πr2------(1)
l=S−πr2πrl=S−πr2πr
The volume of the cone V=13V=13πr2hπr2h
=13=13πr2l2−r2−−−−−√πr2l2−r2
=πr23=πr23(S−πr2)2π2r2−r2−−−−−−−−−−−−√(S−πr2)2π2r2−r2
=πr23=πr23(S−πr2)2−π2r4π2r2−−−−−−−−−−−√(S−πr2)2−π2r4π2r2
=πr23=πr23S2−2πSr2+π2r4−π2r4−−−−−−−−−−−−−−−−−−√πrS2−2πSr2+π2r4−π2r4πr
=r3=r3S2−2πSr2+π2r4−π2r4−−−−−−−−−−−−−−−−−−−−−√S2−2πSr2+π2r4−π2r4
=r3=r3S(S−2πr2)−−−−−−−−−−√S(S−2πr2)
Step 2:
V2=r29V2=r29S(S−2πr2)S(S−2πr2)
V2=S9V2=S9(Sr2−2πr4)(Sr2−2πr4)
dV2dr=S9dV2dr=S9[2Sr−8πr3][2Sr−8πr3]
d2V2dr2=S9d2V2dr2=S9[2S−24πr2][2S−24πr2]------(2)
Now dV2drdV2dr=0=0
⇒S9⇒S9(2Sr−8πr3)=0(2Sr−8πr3)=0
⇒(S−4πr2)=0⇒(S−4πr2)=0
Putting S=4πr2S=4πr2 in (2)
d2Vdr2=S9d2Vdr2=S9[8πr2−24πr2]=−ve[8πr2−24πr2]=−ve
⇒V⇒V is maximum when S=4πr2S=4πr2
Step 3:
Putting the value in equ(1)
4πr2=πrl+πr24πr2=πrl+πr2
4πr2−πr2=πrl4πr2−πr2=πrl
3πr2=πrl3πr2=πrl
3r2=rl3r2=rl
rl=13rl=13
sinα=13sinα=13
l=sin−1(13)l=sin−1(13)
Thus VV is maximum when S=S=constant
α=sin−113
It may help you...☺☺
Here is your answer...
Let rr be the radius ll be the slant height
and hh be the vertical height of a cone of semi-vertical angle αα
Surface area S=πrl+πr2S=πrl+πr2------(1)
l=S−πr2πrl=S−πr2πr
The volume of the cone V=13V=13πr2hπr2h
=13=13πr2l2−r2−−−−−√πr2l2−r2
=πr23=πr23(S−πr2)2π2r2−r2−−−−−−−−−−−−√(S−πr2)2π2r2−r2
=πr23=πr23(S−πr2)2−π2r4π2r2−−−−−−−−−−−√(S−πr2)2−π2r4π2r2
=πr23=πr23S2−2πSr2+π2r4−π2r4−−−−−−−−−−−−−−−−−−√πrS2−2πSr2+π2r4−π2r4πr
=r3=r3S2−2πSr2+π2r4−π2r4−−−−−−−−−−−−−−−−−−−−−√S2−2πSr2+π2r4−π2r4
=r3=r3S(S−2πr2)−−−−−−−−−−√S(S−2πr2)
Step 2:
V2=r29V2=r29S(S−2πr2)S(S−2πr2)
V2=S9V2=S9(Sr2−2πr4)(Sr2−2πr4)
dV2dr=S9dV2dr=S9[2Sr−8πr3][2Sr−8πr3]
d2V2dr2=S9d2V2dr2=S9[2S−24πr2][2S−24πr2]------(2)
Now dV2drdV2dr=0=0
⇒S9⇒S9(2Sr−8πr3)=0(2Sr−8πr3)=0
⇒(S−4πr2)=0⇒(S−4πr2)=0
Putting S=4πr2S=4πr2 in (2)
d2Vdr2=S9d2Vdr2=S9[8πr2−24πr2]=−ve[8πr2−24πr2]=−ve
⇒V⇒V is maximum when S=4πr2S=4πr2
Step 3:
Putting the value in equ(1)
4πr2=πrl+πr24πr2=πrl+πr2
4πr2−πr2=πrl4πr2−πr2=πrl
3πr2=πrl3πr2=πrl
3r2=rl3r2=rl
rl=13rl=13
sinα=13sinα=13
l=sin−1(13)l=sin−1(13)
Thus VV is maximum when S=S=constant
α=sin−113
It may help you...☺☺
Similar questions