Math, asked by unknown1692, 1 year ago

Two circles touch externally. The sum of their areas is 130 sq. cm and the distance between their centers is 14 cm. Find the radii of the circles.

Answers

Answered by shashwat0309
23
let the radius of on circle be R
let the radius of other circle be R
according to question,
22/7(R^2+r^2)=130
R^2+r^2=130×7/22
R^2+r^2=455/11


R+r=14
R=14-r
put these value
(14-r)^2+r^2=455/11
simplify it u will get answer

shashwat0309: mark it as brain list and follow me for any help
manasvimankal: Complete ur answer
Answered by Anonymous
136

Since the given circles touch externally, we have

Sum of their radii = distance between their centres= 14cm.

\:\:

{\bold { \underline{\small{ Let \:the \:radii\: of \:the \:given \:circles \:be -}}}}

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\normalsize{\underline{\mathcal{\green{x\:cm\:\:\ and }}}}

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\normalsize{\underline{\mathcal{\red{(14 - X) \:\:cm }}}}

\:\:

\sf Sum\: of \:their\: areas \:= [πx²+ π(14-x)²]cm².

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sf \therefore\:\:\:πx²+π(14-x)²=130π

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\hookrightarrow\:\sf x²+(14-x)²=130

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\hookrightarrow\:\sf 2x²-28x+66=0

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\hookrightarrow\:\sf x²-14x+33=0

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\hookrightarrow\:\sf (x-11)(x-3)=0

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\hookrightarrow\:\sf x-11=0\:\:\:or\:\:\:x-3=0

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\boxed{\sf{x=\frak{\purple{11}}}}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\boxed{\sf{x=\frak{\orange{3}}}}}

\:\:

Now, put the value of x

\sf\bold x = 11

  • \sf (14-x)=(14-11)=3

\sf\bold x = 3

  • \sf(14-x)=(14-3)=11.

\:\:

Hence the radii of the circles are 11cm and 3cm.

\:\:

\:\:

{\small{\color{green}\star{\mathfrak{\color{teal} {\underline{\underline{Related \:terms\: and \:formulas :}}}}}}}

\:\:

CIRCLE

  • A circle is the locus of a point which moves in a plane in such a way that its distance from a fixed point always remains the same.

The fixed point is called the center and

The given constant distance is known as the radius of the circle.

Segment of a Circle: The portion (or part) of a circular region enclosed between a chord and the corresponding arc is called a segment of the circle.

Sector of a Circle: The portion (or part) of the circular region enclosed by the two radii and the corresponding arc is called a sector of the circle.

\:\:

\sf Area\: of \:circle= 2πr\:\:\:\:or\:\:\:\:\bf\dfrac{πd²}{4}|where, 'r' = radius|

\sf Area\: of \:semicircle = [tex]\bf\dfrac{πr²}{2}

\sf Radius\: of \:circle = \displaystyle \sqrt {\frac{Area}{π}}

Similar questions