Math, asked by aindlanarsingrao, 10 months ago

two poles of equal height are standing opposite to each other,on the either side of the road which is 80m wide.From a point between them on the road
,the angles of elevation of top of
the poles are 60°and 30° respectively.Find the height of the poles?

Answers

Answered by ranapriyanshu92
0

Its NCERT question brdr!

Here is the solution;)

Given that:

∠APB=60

,∠CPD=30

,AC=80m

To find:

The height of the pole=AB=CD=?

Solution:

Let AB and CD be the two poles of equal height and P be the point on the road between the poles.

In △APB,

tan60

=

AP

AB

or, AP=AB×

tan60

1

or, AP=

3

AB

−−−−−−−(i)

In △PCD,

tan30

=

CP

CD

or, CP=CD×

tan30

1

or, CP=

3

CD=

3

AB ∵AB=CD −−−−−−−(ii)

Adding eqn. (i) and eqn. (ii) we get,

AP+CP=

3

AB

+AB

3

or, AC=AB(

3

+

3

1

)

or, 80m=4

3

AB

or, AB=20

3

m

Therefore, height of the pole=20

3

m=34.64m

Answered by suryashakti93
4

_____________________________

|............|.\P............/|X............................

|............|...\........../.|........................ ......

|........h.|.....\......./..|.h..............................

|............|.......\.../....|..................................

|............|__._..\/.__|.................................

|.........,.Q.......R....Y.....................................

|________________________________

/_PRQ=60°. /_XRY=30°

PQ=XY= height of the pole = h

QY=80m

.: QR=x RY=80-x

In PQR

 tan30 =  \frac{h}{x}  \\ (tan30 =  \frac{1}{ \sqrt{3} } ) \\  \frac{h}{x}  =  \frac{1}{ \sqrt{3} }  \\ x = h \sqrt{3}  \\

x=h√3 -------------------(1)

In XYR

tan60 = \frac{h}{80 - x}  \\ tan60 =  \sqrt{3}  \\  \frac{h}{80 - x}  =  \sqrt{3}  \\ h =  (80 - x) \sqrt{3}

Put (1) in

h = (80-x)3

h = (80- h√3)3

h = 803 - 3h

h+3h = 803

4h = 803

h = 203

i.e. h = 34.64m

Height of pole = 34.64m

Similar questions