two poles of equal height are standing opposite to each other,on the either side of the road which is 80m wide.From a point between them on the road
,the angles of elevation of top of
the poles are 60°and 30° respectively.Find the height of the poles?
Answers
Its NCERT question brdr!
Here is the solution;)
Given that:
∠APB=60
∘
,∠CPD=30
∘
,AC=80m
To find:
The height of the pole=AB=CD=?
Solution:
Let AB and CD be the two poles of equal height and P be the point on the road between the poles.
In △APB,
tan60
∘
=
AP
AB
or, AP=AB×
tan60
∘
1
or, AP=
3
AB
−−−−−−−(i)
In △PCD,
tan30
∘
=
CP
CD
or, CP=CD×
tan30
∘
1
or, CP=
3
CD=
3
AB ∵AB=CD −−−−−−−(ii)
Adding eqn. (i) and eqn. (ii) we get,
AP+CP=
3
AB
+AB
3
or, AC=AB(
3
+
3
1
)
or, 80m=4
3
AB
or, AB=20
3
m
Therefore, height of the pole=20
3
m=34.64m
_____________________________
|............|.\P............/|X............................
|............|...\........../.|........................ ......
|........h.|.....\......./..|.h..............................
|............|.......\.../....|..................................
|............|__._..\/.__|.................................
|.........,.Q.......R....Y.....................................
|________________________________
/_PRQ=60°. /_XRY=30°
PQ=XY= height of the pole = h
QY=80m
.: QR=x RY=80-x
In ∆PQR
x=h√3 -------------------(1)
In ∆XYR
Put (1) in
h = (80-x)√3
h = (80- h√3)√3
h = 80√3 - 3h
h+3h = 80√3
4h = 80√3
h = 20√3
i.e. h = 34.64m
Height of pole = 34.64m