Math, asked by lavanya8745, 1 year ago

use mathematical induction prove that 2+3.2+4.2^2+.... upto n terms=n 2^n for all n€N​

Answers

Answered by sonuvuce
14

Answer:

2+3.2+4.2^2+5.2^3+..... \text{upto n terms}=n2^n    ........ (1)

For n = 1

2=2

Thus (1) is true for n = 1

Let us assume that

for n = k

2+3.2+4.2^2+5.2^3+..... \text{upto n terms}=k2^k is true

i.e. 2+3.2+4.2^2+5.2^3+..... +(1+k).2^{k-1}}=k2^k is true

Adding (2+k).2^k on both sides

2+3.2+4.2^2+5.2^3+..... +(1+k).2^{k-1}+(2+k).2^k=k2^k+(2+k).2^k

\implies 2+3.2+4.2^2+5.2^3+..... +(1+k).2^{k-1}+(2+k).2^k=2k2^k+2.2^k

\implies 2+3.2+4.2^2+5.2^3+..... +(1+k).2^{k-1}+(2+k).2^k=k2^{k+1}+2^{k+1}

\implies 2+3.2+4.2^2+5.2^3+..... +(1+k).2^{k-1}+(1+k+1).2^k=(k+1)2^{k+1}

Thus the relation holds true for n = k ⇒ it holds true for n = k+1

Thus the relation holds true for all natural numbers n         (Proved)

Similar questions