Math, asked by buachandrika42, 1 year ago


who answers my question I will mark them as brainliest and I will follow them. ​

Attachments:

Answers

Answered by laxmanacharysangoju
1

Answer:

by multiply and divide with its conjugate we can get the number whose denominator is rationalise...

Attachments:
Answered by Blaezii
5

Answer:

Proved!

Step-by-step explanation:

Given Problem:

Prove that 1/2+√3+2/√ 5-√3+1/2-√5 = 0

Solution:

To Prove:

1/2+√3+2/√ 5-√3+1/2-√5 = 0

Method:

a) \dfrac{1}{2+\sqrt{3} }

\dfrac{2- \sqrt{3} }{\ [(2+\sqrt{3) (2-\sqrt{3)]} } }

\dfrac{(2-\sqrt{3)} }{[4 - 3]}

= 2 - √3 -----------(Equation1)

b) \dfrac{2}{\sqrt{5}-\sqrt{3}  }

\dfrac{2(\sqrt{5} + \sqrt{3)} }{(5-3)}

\dfrac{2(\sqrt{5} + \sqrt{3} }{(5-3)}

\dfrac{2(\sqrt{5} + \sqrt{3}}{2}

= √5 + √3 ----------(Equation)2

c) \dfrac{1}{2- \sqrt{5} }

\dfrac{2=\sqrt{5} }{[(2-\sqrt{5)(2+\sqrt{5)]} } }

\dfrac{2+\sqrt{5} }{4-5}

√= - ( 2 + √5 ) ---- Equation(3)

According to the Given Problem,

(1) + (2) + (3)

= 2 - √3 + √5 + √3 - ( 2 + √5 )

= 2 - √3 + √5 + √3 - 2 - √5

= 0

Hence Proved!

Similar questions