Math, asked by phurparai, 10 months ago

who know the heroes formula ?​

Answers

Answered by satyavathilamps
0

Answer:

Step-by-step Formulation

Heron's formula states that the area of a triangle whose sides have lengths a, b, and c is

where s is the semi-perimeter of the triangle; that is,

Heron's formula can also be written as

A= {(a+b+c)(-a+b+c)(a-b+c)(a+b-c{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}

{\displaystyle A={\frac {1}{4}}{\sqrt {2(a^{2}b^{2}+a^{2}c^{2}+b^{2}c^{2})-(a^{4}+b^{4}+c^{4})}}}A=\frac{1}{4}\sqrt{2(a^2 b^2+a^2c^2+b^2c^2)-(a^4+b^4+c^4)}

{\displaystyle A={\frac {1}{4}}{\sqrt {(a^{2}+b^{2}+c^{2})^{2}-2(a^{4}+b^{4}+c^{4})}}}A=\frac{1}{4}\sqrt{(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)}

{\displaystyle A={\frac {1}{4}}{\sqrt {4(a^{2}b^{2}+a^{2}c^{2}+b^{2}c^{2})-(a^{2}+b^{2}+c^{2})^{2}}}.}{\displaystyle A={\frac {1}{4}}{\sqrt {4(a^{2}b^{2}+a^{2}c^{2}+b^{2}c^{2})-(a^{2}+b^{2}+c^{2})^{2}}}.}explanation:

Answered by lakshyapatel11255
0

Answer:

hii

we use heroes formula when we know all the sides of triangle to find area

first we find S = A+B+C/2

then .....

√s(s-a) (s-b) (s-c)

hope it helps you

please mark as brainliest please please

Similar questions