Math, asked by itmanisharawat, 1 year ago

with vertices A,B,C of a triangle ABC as centres,arcs are drawn with radii 6cm each.if AB=20cm,BC=48cm,CA=52cm find the area of shadedbregion

Attachments:

Answers

Answered by shovamayee
74

Ans. Hope this answers helps u !


Attachments:
Answered by mysticd
21

Answer:

\red {Area \:of \:the \: shaded \: region}

\green {= 423.52\:cm^{2}}

Step-by-step explanation:

 Given \: A,B\: and \: C \:are \: vertices \: of \\\triangle ABC . Arcs \: are \: drawn \: with \: radii \\6\:cm \:each .\\AB = c  = 20\:cm ,\:BC = a  = 48\:cm , \: CA = b = 52 \:cm .

 \underline { Finding \: \triangle ABC\: area }

\blue { (By \: Heron's \: Formula) }

 s = \frac{a+b+c}{2} \\= \frac{48 + 52 + 20 }{2}\\= \frac{ 120}{2} = 60

 \triangle = \sqrt{s(s-a)(s-b)(s-c)}\\=\sqrt{60(60-48)(60-52)(60-20)}\\=\sqrt{60\times 12\times 8 \times 40}\\= \sqrt { 480\times 480}\\= 480\:cm^{2}\:---(1)

 Area \: of \: 3 \: sectors = \frac{(\angle A+\angle B + \angle C )}{360}\times \pi r^{2}

 = \frac{180}{360} \times 3.14 \times 6^{2}

 = 3.14 \times 18\\= 56.52 \:cm^{2}\:--(2)

 Area \:of \:the \: shaded \: region \\= 480 - 56.52\\= 423.52 \:cm^{2}

Therefore.,

\red {Area \:of \:the \: shaded \: region}

\green {= 423.52\:cm^{2}}

•••♪

Similar questions