x=1/x-5 find x2-1/x2
Answers
Answered by
1
Answer:
Value of x^2-\frac{1}{x^2}\:is\:-5\sqrt{29}
Step-by-step explanation:
Given: x=\frac{1}{x}-5\:\:\implies\:\:x-\frac{1}{x}=-5
To find: x^2-\frac{1}{x^2}
We know that (a + b)² = (a - b)² + 4ab
put a = x and b = 1/x
(x+\frac{1}{x})^2=(x-\frac{1}{x})^2+4\times x\times\frac{1}{x}
(x+\frac{1}{x})^2=(-5)^2+4
(x+\frac{1}{x})^2=25+4
x+\frac{1}{x}=\sqrt{29}
Now, we know that a² - b² = (a + b)(a -b)
put a = x and y = 1/x
we get,
x^2-(\frac{1}{x})^2=(x+\frac{1}{x})(x-\frac{1}{x})
x^2-\frac{1}{x^2}=(\sqrt{29})(-5)
x^2-\frac{1}{x^2}=-5\sqrt{29}
Therefore, Value of x^2-\frac{1}{x^2}\:is\:-5\sqrt{29}
Similar questions