Math, asked by rrrmm, 1 year ago

x=asin¢ and y=btan¢ prove asquare/xspuqre-bsquare/ysquare=1

Answers

Answered by rakeshmohata
0
If x=asin¢ and y=btan¢ then
 \frac{a}{x}  =   \frac{1}{ \sin(c) }  \:  \:  \:  \: and \:  \:  \frac{b}{y}  =  \frac{1}{ \tan(c) }
Where ¢=c
So.
 \frac{a}{x}  =  \csc(c)  \:  \:  \:  \:  and \:  \:  \:  \:  \frac{b}{y}  =  \cot(c)  \\ so.... \\  \frac{ {a}^{2} }{ {x}^{2} }  =  { \csc(c) }^{2}  \:  \:  \:  \: and \:  \frac{ {b}^{2} }{ {y}^{2} }  =  { \cot(c) }^{2}  \\ thus... \\  \frac{ {a}^{2} }{ {x}^{2} }  -  \frac{ {b}^{2} }{ {y}^{2} }  =  { \csc(c) }^{2}  -  { \cot(c) }^{2}  = 1 (proved)\\ since ... \:  \:  { \csc(c) }^{2}  -  { \cot(x) }^{2}  = 1
Similar questions