Math, asked by tanasharao2129, 11 months ago

[x (x – 1) + 1]^{⅓},0≤x≤1 का उच्चतम मान है
(A) \frac{1}{3}^\frac{1}{3}
(B) \frac{1}{2}
(C) 1
(D) 0

Answers

Answered by amitnrw
0

Given : f(x)  =  (x(x - 1) + 1)^{(\frac{1}{3})}   0≤x≤1

To find :  उच्चतम  मान

Solution:

f(x)  = (x(x - 1) + 1)^{(\frac{1}{3})}

=> f(x) =   (x^2 - x  + 1) ^{(\frac{1}{3})}

  f'(x) = (\frac{1}{3})   (x^2 - x  + 1) ^{(\frac{-2}{3})}  (2x - 1)

f'(x)  = 0

=> 2x - 1 = 0

=> x  = 1/2

0≤x≤1

0 , 1/2  , 1

x = 0

f(0) =  1

x = 1/2

f(1/2) =  (\frac{3}{4} )^\frac{1}{3} < 1

x =   1

f( 1) =  1

उच्चतम मान मान है =  1

और सीखें :

f(2.01) का सन्निकट मान ज्ञात कीजिए जबकि f(x) = 4x^{2} + 5x + 2

brainly.in/question/16307785

f(5.001) का सन्निकट मान ज्ञात कीजिए जहाँ f(x) = x^{3} – 7 x^{2} + 15

brainly.in/question/16308025

सिद्ध कीजिए कि y=log(1+x) - \frac{2x}{2+x} , x> - 1

brainly.in/question/10817592

Similar questions