y=(sinx)^sinx,Find dy/dx for the given function y wherever defined
Answers
Answered by
2
Given,
differentiate with respect to x,
hence, dy/dx = (sinx)^(sinx).cosx[1 + log(sinx)]
differentiate with respect to x,
hence, dy/dx = (sinx)^(sinx).cosx[1 + log(sinx)]
Answered by
4
HELLO DEAR,
GIVEN:-
Y = (sinx)^(sinx)
talking log both of side,
log y = (sinx).log(sinx)
differentiating y w.r.t x
(1/y)*dy/dx = (sinx)*d{log(sinx)}/dx + log(sinx)*d(sinx)/dx
(1/y)*dy/dx = sinx*{cosx/sinx} + log(sinx) * cosx
(1/y)*dy/dx = cosx + cosx*log(sinx)
dy/dx = ( y )*cosx{1 + log(sinx)}
dy/dx = (sinx)^(sinx)*cosx{1 + log(sinx)]}
I HOPE ITS HELP YOU DEAR,
THANKS
GIVEN:-
Y = (sinx)^(sinx)
talking log both of side,
log y = (sinx).log(sinx)
differentiating y w.r.t x
(1/y)*dy/dx = (sinx)*d{log(sinx)}/dx + log(sinx)*d(sinx)/dx
(1/y)*dy/dx = sinx*{cosx/sinx} + log(sinx) * cosx
(1/y)*dy/dx = cosx + cosx*log(sinx)
dy/dx = ( y )*cosx{1 + log(sinx)}
dy/dx = (sinx)^(sinx)*cosx{1 + log(sinx)]}
I HOPE ITS HELP YOU DEAR,
THANKS
rohitkumargupta:
:-)
Similar questions