Math, asked by vaishnavireddy5497, 11 months ago

यदि A+B+C = 1800 तो सिद्ध कीजिए: CosA + Cos B + cos C = 1+4sinA/2 sinB/2 sinC/2

Answers

Answered by MaheswariS
0

\textbf{Given:}

A+B+C=180^{\circ}

\text{consider,}

cosA+cosB+cosC

\text{Using, }\;\;\boxed{\bf\;cosC+cosD=2\;cos(\frac{C+D}{2})\;cos(\frac{C-D}{2})}

=2\;cos(\frac{A+B}{2})\;cos(\frac{A-B}{2})+1-2\;sin^2\frac{C}{2}

=2\;cos(90^{\circ}-\frac{C}{2})\;cos(\frac{A-B}{2})+1-2\;sin^2\frac{C}{2}

\text{using, }\;\;\boxed{\bf\;cos(90^{\circ}-A)=sinA}

=1+2\;sin\frac{C}{2}\;cos(\frac{A-B}{2})-2\;sin^2\frac{C}{2}

=1+2\;sin\frac{C}{2}[cos(\frac{A-B}{2})-sin\frac{C}{2}]

=1+2\;sin\frac{C}{2}[cos(\frac{A-B}{2})-sin(90^{\circ}-\frac{A+B}{2})]

\text{using, }\;\;\boxed{\bf\;sin(90^{\circ}-A)=cosA}

=1+2\;sin\frac{C}{2}[cos(\frac{A-B}{2})-cos(\frac{A+B}{2})]

=1+2\;sin\frac{C}{2}[cos(\frac{A}{2}-\frac{B}{2})-cos(\frac{A}{2}-\frac{B}{2})]

\text{Using, }\;\;\boxed{\bf\;cos(A-B)-cos(A+B)=2\;sinA\;sinB}

=1+2\;sin\frac{C}{2}[2\;sin\frac{A}{2}\;sin\frac{B}{2}]

=1+4\;sin\frac{A}{2}\;sin\frac{B}{2}\;sin\frac{C}{2}

Find more:

If A+B+C=180, sinA-sinB+sinC=

https://brainly.in/question/3454866#

Similar questions