Math, asked by ibrahimshariff4950, 10 months ago

यदि y=500e^{7x} +600e^{-7x} है तो दर्शाइए कि तट d^{2}y/dx^{2} = 49y है।

Answers

Answered by kaushik05
109

 \huge \mathfrak{solution}

Given:

y = 500 {e}^{7x}  + 600 {e}^{ - 7x}

To prove :

 \frac{  {d}^{2} y}{d {x}^{2} }  = 49y

 \implies \: y = 500 {e}^{7x}  + 600 {e}^{ - 7x}

Differentiate w.r.t. x

 \implies \:  \frac{dy}{dx}  = 500 \frac{d}{dx}  {e}^{7x}  + 600 \frac{d}{dx}  {e}^{ - 7x}  \\  \\ \implies \:  \frac{dy}{dx}  = 500 \times 7 {e}^{7x}  +  600 \times  - 7 {e}^{ - 7x}  \\  \\   \implies \frac{dy}{dx}  =( 7)500 {e}^{7x}  + ( -7)600 {e}^{ - 7x}

Again differentiate w.r.t. x ,

 \star \:  \frac{ {d}^{2}y }{d {x}^{2} }  =  \frac{d}{dx} ((7 )\times 500 {e}^{7x}   +( - 7)600 {e}^{ - 7x} ) \\  \\  \star \frac{ {d}^{2} y}{d {x}^{2} }  = (7)(7)500 {e}^{7x}  + ( - 7)( - 7)600 {e}^{ - 7x}  \\  \\  \star \frac{ {d}^{2} y}{d {x}^{2} }  = (49)500 {e}^{7x}  + (49)600 {e}^{ - 7x}  \\  \\  \star \:  \frac{ {d}^{2}y }{d {x}^{2} }  = 49(500 {e}^{7x}  + 600 {e}^{ - 7x} )

And

y = 500e^7x +600e^-7x

 \star \:  \frac{ {d}^{2} y}{dx ^{2} }  = 49y

proved

Formula used:

 \huge \star \bold{ \frac{d}{dx}  {e}^{ax}  =  {e }^{ax} (a)}

Answered by amitnrw
2

d²y/dx² = 49y यदि y = 500e⁷ˣ  + 600e⁻⁷ˣ

Step-by-step explanation:

y = 500e⁷ˣ  + 600e⁻⁷ˣ

dy/dx = 500e⁷ˣ * 7  + 600e⁻⁷ˣ *(-7)

=> dy/dx = 7 ( 500e⁷ˣ - 600e⁻⁷ˣ)

=> d²y/dx² = 7 (  500e⁷ˣ * 7  - 600e⁻⁷ˣ *(-7))

=> d²y/dx² = 7 (  500e⁷ˣ * 7  + 600e⁻⁷ˣ *(7))

=>  d²y/dx² = 7 * 7(  500e⁷ˣ  + 600e⁻⁷ˣ )

=>  d²y/dx² = 49(  500e⁷ˣ  + 600e⁻⁷ˣ )

=> d²y/dx² = 49y

और अधिक जानें :

X^{20}  द्वितीय कोटि के अवकलज ज्ञात कीजिए

brainly.in/question/15287535

x cos x  द्वितीय कोटि के अवकलज ज्ञात कीजिए

brainly.in/question/15287541

Similar questions