Math, asked by 23danishkhan23, 5 months ago

can anyone please complete it after 2th step ​

Attachments:

Answers

Answered by SweetLily
8

Question

 \bold{ :  \to \: tan(45 + 30)} \\

Solution

Trigonometric Formula used :

 \boxed { \bold {tan(x + y) =  \frac{tanx +tany }{1 - tanx.tany} }}

Now substitute the values in the formula

 \to \bold{tan(45+30) =  \frac{tan 45+ tan30}{1- tan45. tan30} } \\

tan 45°= 1

tan 30°= 1/3

 \to \bold{tan(45+30) =   \frac{1 +  \frac{1}{ \sqrt{3} } }{1 - (1 \times  \frac{1}{  \sqrt{3} } )} } \\  \\  \to \: \bold{tan(45+30) =  \frac{ \sqrt{3  }   +  1}{ \sqrt{3}  - 1} }

-------------------------------------

More trignometry IdEntiTieS

⚡sin(x+y) = sin(x)cos(y)+cos(x)sin(y)

⚡cos(x+y) = cos(x)cos(y)–sin(x)sin(y)

⚡tan(x+y) = (tan x + tan y)/ (1−tan x . tan y)

⚡sin(x–y) = sin(x)cos(y)–cos(x)sin(y)

⚡cos(x–y) = cos(x)cos(y) + sin(x)sin(y)

⚡tan(x−y) = (tan x–tan y)/ (1+tan x . tan y)

⚡Sin 3x = 3sin x – 4sin³x

⚡Cos 3x = 4cos³x-3cos x

⚡Tan 3x = [3tanx-tan³x]/[1-3tan²x]

______________________

Similar questions