Math, asked by samvani8492, 1 year ago

cube root a + cube root b +cube root c = 0 then what is (a+b+c)whole cube ?

Answers

Answered by MaheswariS
128

Answer:

(a+b+c)^3=27abc

Step-by-step explanation:

Formula used:

if x+y+z=0 then x^3+y^3+z^3=3xyz

Given:

\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=0

From the above formula

(\sqrt[3]{a})^3+(\sqrt[3]{b})^3+(\sqrt[3]{c})^3=3\sqrt[3]{a}\sqrt[3]{b}\sqrt[3]{c}

a+b+c=3\sqrt[3]{a}\sqrt[3]{b}\sqrt[3]{c}

Now,

(a+b+c)^3=(3\sqrt[3]{a}\sqrt[3]{b}\sqrt[3]{c})^3

(a+b+c)^3=3^3(\sqrt[3]{a})^3(\sqrt[3]{b})^3(\sqrt[3]{c})^3

(a+b+c)^3=27abc

Answered by SerenaBochenek
40

Answer:

\text{The value of }(a+b+c)^3\text{ is }27abc

Step-by-step explanation:

Given that

\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=0\

\text{we have to find the value of }(a+b+c)^3

As we know

x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+3abc

If x+y+z=0, then

x^3+y^3+z^3=3xyz

Put\thinspace x=\sqrt[3]{a}, y=\sqrt[3]{b}, z=\sqrt[3]{c}\

Then, we get

(\sqrt[3]{a})^3+(\sqrt[3]{b})^3+(\sqrt[3]{c})^3=3(\sqrt[3]{a})(\sqrt[3]{b})(\sqrt[3]{c})

a+b+c=3(\sqrt[3]{a})(\sqrt[3]{b})(\sqrt[3]{c})

Take cube on both sides

(a+b+c)^3=27(\sqrt[3]{a})^3(\sqrt[3]{b})^3(\sqrt[3]{c})^3=9abc

\text{Hence, the value of }(a+b+c)^3\text{ is }27abc

Similar questions