Math, asked by abhishekkashyap0701, 1 year ago

Find the value of x if (97-x)^1/4 + x^1/4 = 5...

Answers

Answered by TooFree
7

(97 - x)^\frac{1}{4} + x^\frac{1}{4} = 5


Square both sides:

[ (97 - x)^\frac{1}{4} + x^\frac{1}{4}]^2 = 5^2

(97 - x)^\frac{1}{2} + x^\frac{1}{2} + 2(97 - x)^\frac{1}{4}x^\frac{1}{4}=25


Subtract "2ab" from both sides:

(97 - x)^\frac{1}{2} + x^\frac{1}{2} = 25 - 2[x (97 - x)]^\frac{1}{4}


Square both sides:

[(97 - x)^\frac{1}{2} + x^\frac{1}{2}]^2 = [25 - 2[x (97 - x)]^\frac{1}{4}]^2

(97 - x) + x + 2[ x(97 - x)]^\frac{1}{2} = 625 + 4[x{97 - x)]^\frac{1}{2} - 100[x (97 - x)]^\frac{1}{4}


Simplify:

528 + 2[x{97 - x)]^\frac{1}{2} - 100[x (97 - x)]^\frac{1}{4} = 0


Let u = [ x(97 - x)] ^1/4:

528 + 2u^2 - 100u = 0

2u^2 - 100u + 528 = 0

u^2 - 50u + 264 = 0

(u - 6)(u - 44) = 0

u = 6 \ or \ u = 44


Solve x:

\text {When u = 6}

[ x(97 - x)] ^\frac{1}{4} = 6

97x - x^2 = 1296

x^2 - 97x + 1296 = 0

(x - 16) (x - 81) = 0

x = 16 \ or \ x = 81


\text {When u = 44}

[ x(97 - x)] ^\frac{1}{4} = 44

[ x(97 - x)]= 3748096

x^2 - 97x + 3748096

⇒ No solution


Answer: x = 16 or x = 81



abhishekkashyap0701: Thanks....
Answered by Inflameroftheancient
14

Hey there!

Rewrite this following equation with respect to a variable that is, "u".

\bf{u = (97 - x)^{\frac{1}{4}}} \\ AND for "x",  \bf{x = - u^4 + 97} \\.

Therefore we get,

\bf{u + (- u^4 + 97)^{\frac{1}{4}}) = 5} \\

Solve this whole equation!

By subtracting "u' from both the sides:

\bf{u + (- u^4 + 97)^{\frac{1}{4}}) - u = 5 - u} \\

\bf{(- u^4 + 97)^{\frac{1}{4}}) = 5 - u} \\

Taking both the sides of equation as per the exponential power of "4".

\bf{((- u^4 + 97)^{\frac{1}{4}})^4 = (5 - u)^4} \\

Apply the rule of exponents that is, \bf{(a^b)^c = a^{b \times c}} \\.

\bf{(- u^4 + 97)^{\frac{1}{4} \times 4} = (5 - u)^4} \\

\bf{(- u^4 + 97) = (5 - u)^4} \\

By applying the principles and basics of Binomial theorem that is:

\boxed{\bf{(a + b)^n = \textstyle\sum_{i = 0}^n \binom{n}{i} a^{(n - i)} b^i}} \\

Here, a = 5 and b = - u.

\bf{= \textstyle\sum_{i = 0}^4 \binom{4}{i} \times 5^{(4 - i)} (- u)^i} \\

Now, Expand this given summation (I'll solve this in parts for better understanding), for i = 0, 1, 2, 3 and 4, respectively :

\bf{= \frac{4!}{0! (4 - 0)!} \times 5^4 (- u)^0} \\

+  \bf{\frac{4!}{1! (4 - 1)!} \times 5^3 (- u)^1} \\

+   \bf{\frac{4!}{2! (4 - 2)!} \times 5^2 (- u)^2} \\

+  \bf{\frac{4!}{3! (4 - 3)!} \times 5^1 (- u)^3} \\

+  \bf{\frac{4!}{4! (4 - 4)! \times 5^0 (- u)^4} \\

Individually solving for the required summed values of "i" ;

For i = 0,

\bf{\frac{4!}{0! (4 - 0)!} \times 5^4 (- u)^0} \\

\bf{\frac{5^4 \times 4!}{4!}} \\

\bf{625}

For i = 1,

\bf{\frac{4!}{1! (4 - 1)!} \times 5^3 (- u)^1} \\

\bf{- \frac{5^3 \times 4!}{1! (4 - 1)!} \times u} \\

\bf{- \frac{5^3 \times 4}{1!} \times u} \\

\bf{- 500u}

For i = 2,

\bf{\frac{4!}{2! (4 - 2)!} \times 5^2 (- u)^2} \\

\bf{\frac{5^2 \times 4 \times 3 u^2}{2!}} \\

\bf{\frac{300u^2}{2!}} \\

\bf{150u^2}

For i = 3,

\bf{\frac{4!}{3! (4 - 3)!} \times 5^1 (- u)^3} \\

\bf{- \frac{5 \times 4! u^3}{3! \times 1!}} \\

\bf{- \frac{20u^3}{1}} \\

\bf{- 20u^3}

For i = 4,

\bf{\frac{4!}{4! (4 - 4)! \times 5^0 (- u)^4} \\

\bf{\frac{(- u)^4}{(4 - 4)}!} \\

\bf{u^4}

We get,

\bf{- u^4 + 97 = 625 - 500u + 150u^2 - 20u^3 + u^4}

Solve this whole equation :

Switch both the sides, subtract both sides by a value of "97", Simplify and add \bf{u^4} on both sides and simplify to obtain :

\bf{2u^4 - 20u^3 + 150u^2 - 500u + 528 = 0}

Solve by the method of factoring the terms :

Factor out the common term "2" :

\bf{2(u^4 - 10u^3 + 75u^2 - 250u + 264 = 0}

Factor the inner brackets and apply rational root theorem that is,

\bf{a_0 = 264 \: \: \: a_n = 1}

Following are the divisors of \bf{a_0} : 1, 2, 3, 33, 4, 66, 6, 8, 11, 12, 132, 44, 22, 24, 264, 88. And divisor for \bf{a_n} : 1.

Now, check the following rational numbers:

\bf{+-\frac{1, 2, 3, 33, 4, 66, 6, 8, 11, 12, 132, 44, 22, 24, 264, 88}{1}} \\

Therefore, \bf{2}{1}} is a root of the expression so, factoring out (u -2) :

\bf{= 2(u - 2)(u^3 - 8u + 59u - 132)}

Apply the same rational root theorem for the inner brackets to get the expression :

\bf{a_0 = 132 \: \: \: a_n = 1}

Following are the divisors of \bf{a_0} : 1, 2, 33, 3, 4, 66, 6, 22, 11, 12, 132, 44. And divisor of \bf{a-0} : 1.

Now, check the following rational numbers:

\bf{+- \frac{1, 2, 33, 3, 4, 66, 6, 22, 11, 12, 132, 44}{1}} \\

Therefore, \bf{3}{1}} is a root of the expression so, factoring out (u - 3) :

\bf{= 2(u - 2)(u - 3)(u^2 - 5u + 44)}

Now, by applying the zero factor principle into this and solving for "u" ;

Solve for "u - 2" :

= u - 2 = 0

\boxed{\bf{u = 2}}

Solve for "u - 3" :

= u - 3 = 0

\boxed{\bf{u = 3}}

Solve for \bf{u^2 - 5u + 44 = 0} :

For a specific quadratic equation there should be a discriminant of \bf{b^2 - 4ac} for an equation of \bf{ax^2 + bx + c = 0} :

\bf{(- 5)^2 - 4 \times 1 \times 44}

\bf{= - 151}

Discriminant can't be in a negative form for a set solution of "u", therefore there's no final solution for third part.

The final solutions after reaching different values for "u" is :

\boxed{\huge{u = 2 \: \: \: u = 3}} \\

Moving on to obtain the final values for the variable "x" :

Since, \bf{u = (97 - x)^{\frac{1}{4}}} \\

Here, "u = 2" and "u = 3" :

Solving for "u = 2" :

Powering the expressions to the value of "4" :

\bf{((97 - x)^{\frac{1}{4}})^4 = 2^4} \\

\bf{97 - x = 16}

\boxed{\huge{x = 81}}

[Character limit] Similarly find the second value of "x" by solving "u =3".

The two values are : x = 81, x = 16.


Mylo2145: incredible! aren't your hands paining... how could someone type so much.. (^_-).. a brilliant answer! ✌️♥️
Mylo2145: (^o^)
Similar questions