Math, asked by Anonymous, 1 year ago

Question : 18 guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is 11! ( 9!) ( 9! ) / 5! 6!.


Anonymous: Question is incomplete.Question is Check the correctness.

Answers

Answered by Anonymous
3
rest guests = 18 -7 = 11

five seats left in one side and 6 other side

as 9 on one side is there which is occupied by 4 and 3 guests respectively

So select five from 11

11C5

and now 6 left and we have to select 6

So 6C6

Arrange both side guests

9! × 9!

so no of ways = 11C5 × 6C6 × 9!× 9!

= 11!× 9!× 9!/5! 6!

Yeah it's correct
Similar questions