Math, asked by dipshikhachatte3510, 1 year ago

\int \frac{10x^9 + 10^x log_e 10\ dx}{x^{10}+10^x} equals,
(A) 10^x - x^{10} + C
(B) 10^x + x^{10} + C
(C) (10^x - x^{10})-1 + C
(D) log (10^x + x^{10}) + C

Answers

Answered by hukam0685
0

Answer:

Option D is correct.

Step-by-step explanation:

To integrate the given function we can apply substitution Method.

\int \frac{10x^9 + 10^x log_e 10\ dx}{x^{10}+10^x}  \\  \\ let \\  \\ x^{10}+10^x = t \\  \\ differentiate \: both \: side \\  \\ (10 {x}^{9}  +  {10}^{x} log_e 10)dx = dt \\  \\ \int \frac{1}{t}dt = log \: t + C\\  \\ undo \: substitution \\  \\ \int \frac{10x^9 + 10^x log_e 10\ dx}{x^{10}+10^x} = log( \: {x^{10}+10^x} )+ C \\  \\

Option D is correct.

Hope it helps you.

Answered by pulakmath007
12

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

 \displaystyle \sf{ \int \frac{ dx}{x}    =  \log  x\:  + c}

TO DETERMINE

 \displaystyle \sf{ \int \frac{(10 {x}^{9}  +  {10}^{x} log_{e}10)   dx}{ {x}^{10} +  {10}^{x}  }}

CALCULATION

 \displaystyle \sf{ \int \frac{(10 {x}^{9}  +  {10}^{x} log_{e}10)   dx}{ {x}^{10} +  {10}^{x}  }}

Let

 \displaystyle \sf{ z =  {x}^{10} +  {10}^{x}  }

 \implies \displaystyle \sf{  \frac{dz}{dx} =   {10 {x}^{9}  +  {10}^{x} log_{e}10  }}

 \implies \displaystyle \sf{  {dz} =  ( {10 {x}^{9}  +  {10}^{x} log_{e}10)  }}dx

Hence

 \displaystyle \sf{ \int \frac{(10 {x}^{9}  +  {10}^{x} log_{e}10)   dx}{ {x}^{10} +  {10}^{x}  }}

 =  \displaystyle \sf{ \int  \frac{dz}{z} }

 =  \sf{ \log z \:  + c \:    \: ( \:where \: c \: is \: constant)  \: }

 =  \sf{ \log ( \:   {x}^{10} +  {10}^{x} \:  ) \:  + c \:     \: }

RESULT

 \boxed{ \displaystyle \sf{ \int \frac{(10 {x}^{9}  +  {10}^{x} log_{e}10)   dx}{ {x}^{10} +  {10}^{x}  }}  \: =  \: { \log ( \:   {x}^{10} +  {10}^{x} \:  ) \:  + c \:  }}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Use Rolles Theorem to find a real number in the interval (0,3) Where the derivative of the function f(x)=x(x-3)^2 Vanish

https://brainly.in/question/22736169

Similar questions