Math, asked by unknown19791, 1 year ago

यदि A+B+C= 900 तो सिद्ध कीजिए: tanAtanB+tanBtanC+tanCtanA=1

Answers

Answered by MaheswariS
1

\textbf{Given:}

A+B+C=90^{\circ}

\implies\;A+B=90^{\circ}-C

\implies\;tan(A+B)=tan(90^{\circ}-C)

\implies\;tan(A+B)=cotC

\text{Using, }\boxed{\bf\;tan(A+B)=\frac{tanA+tanB}{1-tanA\;tanB}\;\text{and}\;cot\theta=\frac{1}{tan\theta}}

\implies\frac{tanA+tanB}{1-tanA\;tanB}=\frac{1}{tanC}

\implies\;tanC(tanA+tanB)=1-tanA\;tanB

\implies\;tanC\;tanA+tanB\;tanC=1-tanA\;tanB

\implies\boxed{\bf\;tanA\;tanB+tanB\;tanC+tanC\;tanA=1}

Find more:

Tan 15 .tan25+tan15.tan50+tan25.tan50​

https://brainly.in/question/13615706

Answered by dhanushree7552
0

Answer:

A+B+C=90∘

\implies\;A+B=90^{\circ}-C⟹A+B=90∘−C

\implies\;tan(A+B)=tan(90^{\circ}-C)⟹tan(A+B)=tan(90∘−

........................

.

......

Similar questions